Machine Learning Notebook
search
Ctrlk
  • Introduction
  • Supervised Learning
    • Basic Overviewchevron-right
      • Numpy Basics
      • Loss Functions
      • Evaluation Metrics
    • Convolutional Neural Networkchevron-right
    • Diffusionchevron-right
    • Naive Bayes
    • Decision Treechevron-right
    • Natural Language Processingchevron-right
    • Searchchevron-right
    • Recommenderchevron-right
    • Recurrent Neural Networkchevron-right
  • Unsupervised Learning
    • Clusteringchevron-right
    • Reinforcement Learningchevron-right
  • SageMaker
    • Population Segmentation with PCA and KMeans
    • Fraud Detection with Linear Learner
    • Time Series Forecast with DeepAR
    • PyTorch Non-linear Classifier
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
  1. Supervised Learning

Basic Overview

Numpy Basicschevron-rightLoss Functionschevron-rightEvaluation Metricschevron-right
PreviousIntroductionchevron-leftNextNumpy Basicschevron-right

Last updated 2 years ago